3-01 Complex Numbers (3.2)

Imaginary Number (imaginary u	nit) <i>i</i>	
• <i>i</i> =		
• <i>i</i> ² =		
Complex Number		
• <i>a</i> + <i>bi</i>		
• <i>a</i> ispart		
• <i>bi</i> ispart		
Any number with	<i>i</i> is called imaginary	
$\sqrt{-9}$	$\sqrt{-12}$	
Adding and Subtracting Compl	ex Numbers	
•like term		
Simplify $(-1 + 2i) + (3 + 3i)$		i) – (3 – 7 <i>i</i>)
2i - (3 + i) + (2 - 3i)		
Multiplying complex numbers		
• • Remember		
Multiply $-i(3 + i)$	(2 + 3	i)(-6 - 2i)
	(-)()
(1+2i)(1-2i)		

- ______ numbers just _______ sign on the imaginary part
- When you multiply complex conjugates, the product is ______

Dividing Complex Numbers

- To divide, ______ the numerator and denominator by the ______ of the denominator
- No imaginary numbers are allowed in the _____ Divide $\frac{2-7i}{1+i}$

when simplified $\frac{2i}{2-i}$

105 #1, 3, 5, 7, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 43, 49, 51 and division and mixed review = 25

3-02 Solve Quadratic Equations by Factoring (3.1)

Factoring Factoring is the opposite of _____ Factoring undoes _____ . $(x+2)(x+5) = x^2 + 7x + 10$ *x* + 2 called _____ x^2 + 7x + 10 called ____ Factor a Quadratic in the form of $ax^2 + bx + c$, 1. Factor out any ______ first, then factor what's left 2. Write two sets of ______ like ()(). 3. Guess: Find two expressions whose product is ______ and put them at the beginning of each set of parentheses. 4. Guess: Find two expressions whose product is ______ and put them at the end of each set of parentheses. Pay attention + and – signs. 5. Check: Calculate the ______ + _____ and compare it to the middle ______. a. If the outers + inners = *bx*, then the factoring is _____. b. If the outers + inners = -bx (the correct number but wrong sign), then change the signs in the parentheses. Otherwise, ______ with new guesses. Factor $x^2 - 3x - 18$ $n^2 - 3n + 9$ $r^2 + 2r - 63$ $14x^2 + 2x - 12$ $3x^2 - 18x$ $2x^2 - 32$

Zero Product Property

• If $a \cdot b = 0$, then either *a* or *b* is _____.

Solve a Quadratic Equation by Factoring

- 1. Make the quadratic expression equal ______.
- 2. _____ the quadratic expression.
- 3. Set each factor equal to ______ as two separate equations.
- 4. _____each equation.
- 5. _____your solutions

Solve

 $x^2-x-42=0$

 $9t^2 - 12t + 4 = 0$

 $3x - 6 = x^2 - 10$

95 #21, 23, 25, 27, 29, 30, 31, 36, 39, 41, 43, 45, 47, 59, 61, Mixed Review = 20

3-03 Solve Quadratic Equations by Graphing and Finding Square Roots (3.1)

Solving Quadratic Equations by

Graphing

- 1. Make the equation equal ______.
- 2. _____ the equation.
- 3. Find the *x*-values of the _____.

Square Roots

- 1. Solve for the ______ expression.
- 2. Take a ______. Remember to put _____.
- 3. Finish ______ for *x*.
- 4. _____ your solutions.

Solve by graphing $x^2 - 2x - 3 = 0$

		1	•			
			,			

Solve by using square roots.	
$2x^2 + 14 = 70$	$4x^2 + 20 = 16$
$\frac{3}{4}(x+1)^2 = 10$	$2x^2 = 5x^2 + 24$

A fruit stand charges \$3 per pound of apples and sells 20 pounds each day. They try dropping the price by \$0.50 and sell 5 more pounds a day. How much should the fruit stand charge to maximize their daily revenue? What is their maximum daily revenue?

95 #1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20, 33, 35, 49, 50, Mixed Review = 20

3-04 Solve Quadratic Equations by Completing the Square (3.3)

The Perfect Square $(x + 3)^2$ $(x + k)^2 = x^2 + 2kx + k^2 = ax^2 + bx + c$ In a perfect square, $c = ____$ Complete the square and then factor. $x^2 + 8x$

Solve by Completing the Square

- 1. _____ the quadratic so *x* terms on _____ side and _____ on other.
- 2. If the ______ is not 1, divide everything by it.
- 3. Complete the square: add ______ to both sides.
- 4. Rewrite the left-hand side as a _____ (factor).
- 5. _____ both sides.

Solve $x^2 + 6x = 16$

Solve $x^2 - 18x + 5 = 0$

Solve $2x^2 - 11x + 12 = 0$

Writing quadratic functions in Standard Form

- $y = a(x h)^2 + k$
- (*h*, *k*) is the ______
 1. Start with ______ form
- 2. _____ the terms with the *x*
- 3. _____ out any number in front of the x^2
- 4. Add ______ to both sides (inside the group on the right)
- 5. _____ as a perfect square
- 6. _____ to get the *y* by itself

Write in standard form $y = 2x^2 + 12x + 16$

114 #9, 11, 21, 23, 27, 31, 33, 35, 37, 39, 41, 43, 45, 51, 55, Mixed Review = 20

3-05 Solve Quadratic Equations using the Quadratic Formula (3.4)

Work with a Partner: Solve $ax^2 + bx + c = 0$

Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

• _____ works for quadratic equations.

Discriminant

- The part under the square root, ______, tells you what kind of solutions you are going to have.
- $b^2 4ac > 0 \rightarrow$ ______ distinct ______ solutions
- $b^2 4ac = 0 \rightarrow \text{exactly}$ solution (a double solution)
- $b^2 4ac < 0 \rightarrow$ ______ distinct ______ solutions

What types of solutions to $5x^2 + 3x - 4 = 0$?

Solve $5x^2 + 3x = 4$

Solve $4x^2 - 6x + 3 = 0$

Algebra 2 3-05	Name:
Find a possible pair of integer values for <i>a</i> and <i>c</i> so that the equation	Name
$ax^2 - 12x + c = 0$ has the given number and type of solution(s). Then write the equation.	
a. one real solution	
b. two imaginary solutions	

Real life problems

• The ______ of an object that is hit or thrown up or down can be modeled by

$$h(t) = -16t^2 + v_0 t + s_0$$

• where v₀ is the initial _____ (up +, down –), and s₀ is the initial _

123 #1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 39, 61, Mixed Review = 20

3-06 Solving Quadratic Equations by Any Method (Review)

Worksheet = 20

3-07 Solve Quadratic Inequalities (3.6)

Solve inequali	ties in one variable.	
Using a num	ber line	
 2 3 4. Pick a 5. Test the 	or use the the zeros on a in each of the three part pe points in the ineq inequalities for the regions that we	(notice it cuts the line into three parts) arts as points juality to see true or false
Solve $p^2 - 4p$		
Solve $x^2 - 4x$	> 45	-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
Using a grap	h	
Or you could al 1. Make t 2. Plot po 3. Quick a. b.	so solve the quadratic inequality is the inequality bints on When the graph is below the <i>x</i> -a When the graph is above the <i>x</i> -a	
Solve using a g	raph. $x^2 + x - 20 > 0$	< + + + + + + + + + + + + + → -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Solve using a graph. $-2x^2 - 9x - 4 \ge 0$

< + + + + + + + + + + + + + + + → -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

140 #27, 29, 31, 33, 35, 37, 39, 41, 43, 49, Mixed Review = 15

3-Review

Take this test as you would take a test in class. When you are finished, check your work against the answers.

3-01 **Evaluate**. 1. $\sqrt{-75}$ Simplify. 2. (2+3i) - (3-i)3. (2+3i)(3-i)3-02 Factor. 5. $6x^2 + x - 12$ 4. $2x^2 + x - 1$ Solve by factoring. 6. $x^2 - 5x + 4 = 0$ 3-03 Solve by graphing. 7. $x^2 - 2x - 15 = 0$ Solve using square roots. 8. $3x^2 + 48 = 0$ 3-04 Solve by completing the square. 9. $x^2 - 6x + 4 = 0$ Rewrite in standard form. 10. $y = x^2 + 2x - 2$ 3-05 Use the descriminant to classify the types of solutions. 12. $x^2 + 4x - 4 = 0$ 11. $0 = 2x^2 - 3x + 5$ Solve by using the quadratic formula. 13. $2x^2 - 3x - 2 = 0$ 3-06 Determine most efficient method to solve. 15. $2x^2 + 11x + 5 = 0$ 16. $x^2 - 4x - 3 = 0$ 14. $2x^2 + 36 = 0$ Solve by any method. 17. $3x^2 - 4 = 2x^2 - 28$ 18. $2x^2 + 4 = 9x$ 19. A hot-air balloon is 20 feet above the ground while taking place in a competition. The pilot drops a weighted bag and a team member on the ground is supposed to catch it before it hits the ground. The model $h = -16t^2 + h_0$ gives the height of the bag *t* seconds after being dropped from the initial height h_0 . How much time does the team member on the ground have to catch the bag? 3-07

21. $3x^2 > 27$

Solve.

20. $x^2 - 4x + 3 \le 0$

Answers

- 1. $5\sqrt{3}i$
- 2. -1 + 4i
- 3. 9 + 7*i*
- 4. (2x-1)(x+1)
- 5. (2x+3)(3x-4)
- 6. 1, 4
- 7. -3, 5
- 8. <u>±</u>4*i*
- 9. $3 \pm \sqrt{5}$
- 10. $y = (x+1)^2 3$
- 11. -31; two imaginary solutions
- 12. 32; two real solutions
- 13. $-\frac{1}{2}$, 2
- 14. square roots
- 15. factoring or quadratic formula
- 16. quadratic formula
- 17. $\pm 2\sqrt{6}i$
- 18. $\frac{1}{2}$, 4
- 19. 1.12 s
- 20. $1 \le x \le 3$
- 21. x < -3 or x > 3