Algebra 2

3-01 Complex Numbers (3.2)

Imaginary Number (imaginary unit) \boldsymbol{i}

- $i=$ \qquad
- $i^{2}=$ \qquad

Complex Number

- $a+b i$
- a is \qquad part
- $b i$ is \qquad part
- Any number with \qquad i is called imaginary
$\sqrt{-9}$

$$
\sqrt{-12}
$$

Adding and Subtracting Complex Numbers

-

like terms
Simplify $(-1+2 i)+(3+3 i)$ $(2-3 i)-(3-7 i)$
$2 i-(3+i)+(2-3 i)$

Multiplying complex numbers

-
- Remember

Multiply $-i(3+i)$ $(2+3 i)(-6-2 i)$
$(1+2 i)(1-2 i)$
\qquad

- ___ numbers just \qquad sign on the imaginary part
- When you multiply complex conjugates, the product is \qquad

Dividing Complex Numbers

- To divide, \qquad the numerator and denominator by the \qquad of the denominator
- No imaginary numbers are allowed in the \qquad when simplified
Divide $\frac{2-7 i}{1+i}$ $\frac{2 i}{2-i}$
$105 \# 1,3,5,7,17,19,21,23,25,29,31,33,35,37,39,43,49,51$ and division and mixed review $=25$

Algebra 2

3-02 Solve Quadratic Equations by Factoring (3.1)

Factoring

- Factoring is the opposite of \qquad
- Factoring undoes
- $(x+2)(x+5)=x^{2}+7 x+10$
- $\quad x+2$ called \qquad
- $x^{2}+7 x+10$ called \qquad

Factor a Quadratic in the form of $a x^{2}+b x+c$,

1. Factor out any \qquad first, then factor what's left
2. Write two sets of \qquad like () ().
3. Guess: Find two expressions whose product is \qquad and put them at the beginning of each set of parentheses.
4. Guess: Find two expressions whose product is \qquad and put them at the end of each set of parentheses. Pay attention + and - signs.
5. Check: Calculate the \qquad $+$ \qquad and compare it to the middle \qquad .
a. If the outers + inners $=b x$, then the factoring is \qquad —.
b. If the outers + inners $=-b x$ (the correct number but wrong sign), then change the signs in the parentheses. Otherwise, \qquad with new guesses.

Factor

$x^{2}-3 x-18$

$$
n^{2}-3 n+9
$$

$r^{2}+2 r-63$
$14 x^{2}+2 x-12$
$3 x^{2}-18 x$
$2 x^{2}-32$

Zero Product Property

- If $a \cdot b=0$, then either a or b is \qquad -

Solve a Quadratic Equation by Factoring

1. Make the quadratic expression equal \qquad -.
2. \qquad the quadratic expression.
3. Set each factor equal to \qquad as two separate equations.
4. \qquad each equation.
5. your solutions
Solve
$x^{2}-x-42=0$
$9 t^{2}-12 t+4=0$

$$
3 x-6=x^{2}-10
$$

$95 \# 21,23,25,27,29,30,31,36,39,41,43,45,47,59,61$, Mixed Review $=20$

Algebra 2

3-03 Solve Quadratic Equations by Graphing and Finding Square Roots (3.1)

Solving Quadratic Equations by

Graphing

1. Make the equation equal \qquad .
2. \qquad the equation.
3. Find the x-values of the \qquad .

Square Roots

1. Solve for the \qquad expression.
2. Take a \qquad . Remember to put \qquad .
3. Finish \qquad for x.
4. \qquad your solutions.
Solve by graphing $x^{2}-2 x-3=0$

Solve by using square roots.
$2 x^{2}+14=70$
$4 x^{2}+20=16$
$\frac{3}{4}(x+1)^{2}=10$ $2 x^{2}=5 x^{2}+24$
\qquad

A fruit stand charges $\$ 3$ per pound of apples and sells 20 pounds each day. They try dropping the price by $\$ 0.50$ and sell 5 more pounds a day. How much should the fruit stand charge to maximize their daily revenue? What is their maximum daily revenue?

Algebra 2

3-04 Solve Quadratic Equations by Completing the Square (3.3)

The Perfect Square

$$
(x+3)^{2}
$$

$$
(x+k)^{2}=x^{2}+2 k x+k^{2}=a x^{2}+b x+c
$$

In a perfect square,

$$
c=
$$

\qquad
Complete the square and then factor.
$x^{2}+8 x$

Solve by Completing the Square

1. \qquad the quadratic so x terms on \qquad side and \qquad on other.
2. If the \qquad is not 1 , divide everything by it.
3. Complete the square: add \qquad to both sides.
4. Rewrite the left-hand side as a \qquad (factor).
5. both sides.
Solve $x^{2}+6 x=16$

Solve $x^{2}-18 x+5=0$

Writing quadratic functions in Standard Form

- $y=a(x-\mathrm{h})^{2}+k$
- (h, k) is the \qquad

1. Start with \qquad form
2. \qquad the terms with the x
3. out any number in front of the x^{2}
4. Add \qquad to both sides (inside the group on the right)
5. \qquad as a perfect square
6. \qquad to get the y by itself
Write in standard form $y=2 x^{2}+12 x+16$

114 \# $9,11,21,23,27,31,33,35,37,39,41,43,45,51,55$, Mixed Review $=20$

Algebra 2

3-05 Solve Quadratic Equations using the Quadratic Formula (3.4)

Work with a Partner: Solve $a x^{2}+b x+c=0$

Quadratic Formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

\qquad works for quadratic equations.

Discriminant

- The part under the square root, \qquad tells you what kind of solutions you are going to have.
- $b^{2}-4 a c>0 \rightarrow$ \qquad distinct \qquad solutions
- $b^{2}-4 a c=0 \rightarrow$ exactly \qquad solution (a double solution)
- $b^{2}-4 a c<0 \rightarrow$ ___ distinct \qquad solutions
What types of solutions to $5 x^{2}+3 x-4=0$?

Solve $5 x^{2}+3 x=4$

Solve $4 x^{2}-6 x+3=0$

Find a possible pair of integer values for a and c so that the equation
$a x^{2}-12 x+c=0$ has the given number and type of solution(s). Then write the equation.
a. one real solution
b. two imaginary solutions

Real life problems

- The \qquad of an object that is hit or thrown up or down can be modeled by

$$
h(t)=-16 t^{2}+v_{0} t+s_{0}
$$

- where v_{0} is the initial ___ (up +, down -), and s_{0} is the initial
$123 \# 1,3,5,7,9,11,13,15,17,19,23,25,27,39,61$, Mixed Review $=20$

Algebra 2

3-06 Solving Quadratic Equations by Any Method (Review)

Choose the Best Method to Solve a Quadratic Equation

To most \qquad solve a quadratic equation,

1. If x appears only \qquad and it is \qquad —either x^{2} or $(x-k)^{2}$ - solve by \qquad .
2. If \qquad x^{2} and x appear, make the equation equal to \qquad and...
a. Try solving by \qquad _.
b. If it cannot be factored quickly, solve by completing the square or the \qquad .
c. Graphing is usually only as a \qquad resort for problems.
Solve $x^{2}+6 x+5=0$ $3 x^{2}-12=5 x$
$4 x^{2}=375-x^{2}$

$$
x^{2}+5 x-7=0
$$

$3 x^{2}=54 x$

Algebra 2

3-07 Solve Quadratic Inequalities (3.6)

Solve inequalities in one variable.

Using a number line

1. Make \qquad
2. ___ or use the \qquad to find the zeros
3. \qquad the zeros on a \qquad (notice it cuts the line into three parts)
4. Pick a \qquad in each of the three parts as \qquad points
5. Test the points in the \qquad inequality to see true or false
6. Write inequalities for the regions that were \qquad
Solve $p^{2}-4 p \leq 5$

Solve $x^{2}-4 x>45$

Using a graph

Or you could also solve the quadratic inequality in one variable by \qquad the quadratic

1. Make the inequality \qquad
2. Plot points on \qquad
3. Quick \qquad
a. When the graph is below the x-axis; \qquad 0
b. When the graph is above the x-axis; 0
Solve using a graph. $x^{2}+x-20>0$

\qquad

Solve using a graph. $-2 x^{2}-9 x-4 \geq 0$

140 \#27, 29, 31, 33, 35, 37, 39, 41, 43, 49, Mixed Review = 15

Algebra 2

3-Review

Take this test as you would take a test in class. When you are finished, check your work against the answers.
3-01
Evaluate.

1. $\sqrt{-75}$

Simplify.
2. $(2+3 i)-(3-i)$
3. $(2+3 i)(3-i)$

3-02
Factor.
4. $2 x^{2}+x-1$
5. $6 x^{2}+x-12$

Solve by factoring.
6. $x^{2}-5 x+4=0$

3-03
Solve by graphing.
7. $x^{2}-2 x-15=0$

Solve using square roots.
8. $3 x^{2}+48=0$

3-04
Solve by completing the square.
9. $x^{2}-6 x+4=0$

Rewrite in standard form.
10. $y=x^{2}+2 x-2$

3-05
Use the descriminant to classify the types of solutions.
11. $0=2 x^{2}-3 x+5$
12. $x^{2}+4 x-4=0$

Solve by using the quadratic formula.

13. $2 x^{2}-3 x-2=0$

3-06
Determine most efficient method to solve.
14. $2 x^{2}+36=0$
15. $2 x^{2}+11 x+5=0$
16. $x^{2}-4 x-3=0$

Solve by any method.
17. $3 x^{2}-4=2 x^{2}-28$
18. $2 x^{2}+4=9 x$
19. A hot-air balloon is 20 feet above the ground while taking place in a competition. The pilot drops a weighted bag and a team member on the ground is supposed to catch it before it hits the ground. The model $h=-16 t^{2}+h_{0}$ gives the height of the bag t seconds after being dropped from the initial height h_{0}. How much time does the team member on the ground have to catch the bag?
3-07
Solve.
20. $x^{2}-4 x+3 \leq 0$
21. $3 x^{2}>27$
\qquad
Answers

1. $5 \sqrt{3} i$
2. $-1+4 i$
3. $9+7 i$
4. $(2 x-1)(x+1)$
5. $(2 x+3)(3 x-4)$
6. 1,4
7. $-3,5$
8. $\pm 4 i$
9. $3 \pm \sqrt{5}$
10. $y=(x+1)^{2}-3$
11. -31 ; two imaginary solutions
12. 32; two real solutions
13. $-\frac{1}{2}, 2$
14. square roots
15. factoring or quadratic formula
16. quadratic formula
17. $\pm 2 \sqrt{6} i$
18. $\frac{1}{2}, 4$
19. 1.12 s
20. $1 \leq x \leq 3$
21. $x<-3$ or $x>3$
